Pengertian Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian

Pernyataan, Kalimat Terbuka, dan Himpunan Penyelesaiannya - Ketika kalian ingin mempelajari materi mengenai persamaan dan pertidaksamaan satu variabel, maka sebaiknya kalian memahami materi dasarnya terlebih dahulu. Tujuannya adalah agar kalian bisa lebih mudah dalam memahami materi tingkat lanjut dari sistem persamaan dan pertidaksamaan linear satu variabel. Materi dasar yang dimaksud disini diantaranya adalah pengertian tentang pernyataan, kalimat terbuka, serta himpunan penyelesaiannya. Pada kesempatan ini Rumus Matematika Dasar akan memberikan penjelasan satu-persatu mengenai ketiga hal tersebut. Berikut adalah penjelasannya:

Pengertian Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian
Google Images

Penjelasan Mengenai Pernyataan, Kalimat Terbuka, dan Himpunan Penyelesaian

Pernyataan

Di dalam kehidupan sehari-hari pastinya kalian sering menjumpai atau mendengar beberapa kalimat seperti:

1. Luas pulau Papua lebih besar daripada pulau Bali.
2. Bandar Lampung adalah ibukota provinsi Lampung
3. Menara Eifel terletak di Perancis
4. Empat lebih kecil daripada tujuh (4 < 7)

Kalimat-kalimat di atas adalah contoh kalimat yang memiliki nilai benar karena setiap orang pasti menyetujui bahwa kalimat tersebut adalah benar.

Sekarang mari kita bandingkan dengan kalimat-kalimat berikut ini:

1. Luas Pulau Sumatera lebih Kecil daripada pulau Bali
2. Ibukota Provinsi Aceh adalah Pekanbaru
3. Matahari terbenam di arah timur
4. Sebelas lebih besar daripada tiga puluh (11 > 30)

Kesimpulan yang dapat kita tarik dari keempat kalimat tersebut adalah bahwa kalimat-kalimat itu bernilai salah karena sudah pasti setiap orang tidak setuju dengan kalimat-kalimat tersebut.


Nah, dari kedua contoh jenis kalimat di atas kita dapat menimpulkan bahwa Pernyataan adalah sebuah kalimat yang nilai kebenarannya dapat ditentukan (salah atau benar).


Sekarang coba kalian amati lagi beberapa kalimat berikut:

1. Pantai ini indah sekali
2. Pria itu sungguh tampan

Apakah kalian bisa menentukan nilai kebenaran dari dua buah kalimat di atas? Apakah kalimat-kalimat itu dapat disebut sebagai pernyataan?

Ketahuilah bahwa kedua kalimat tersebut bukanlah pernyataan. Mengapa demikian? karena kita tidak dapat menentukan nilai kebenarannya. Sebagai contoh pada kalimat kedua "Pria itu sungguh tampan". tentu tidak semua orang bisa menyetujuinya, bisa saja seseorang menganggap pria itu tampan tetapi orang lain menganggap pria itu wajahnya biasa saja. Jadi, kalimat yang kebenaranya belum bisa ditentukan tidak bisa dikategorikan sebagai sebuah pernyataan di dalam matematika.


Kalimat terbuka

Agar lebih mudah dalam memahami apa yang disebut dengan kalimat terbuka dalam matematika, coba perhatikan kalimat di bawah ini:

"Canada terletak di benua x"

Apabila x diganti dengan Amerika, maka kalimat tersebut bisa kita anggap bernilai benar. Akan tetapi jika x diganti dengan Australia, maka kalimat tersebut nilainya akan menjadi salah. kalimat seperti itulah yang disebut sebagai kalimat terbuka karena nilai kebenarannya bergantung kepada variabelnya.

Mari kita simak beberapa contoh kalimat terbuka di dalam plajaran matematika berikut ini:

1. 7 + x = 12, x adalah anggota himpunan bilangan cacah
2. 8 - y = 5, y adalah anggota himpunan bilangan bulat

Kalimat pertama dapat dinyatakan benar apabila x diganti dengan angka 5 dan apabila x diganti dengan angka selain 5 maka pernyataan tersebut bernilai salah. Pada pernyataan tersebut x disebut sebagai variabel sementara 7 dan 12 disebut sebagai konstanta. Begitu juga dengan kalimat kedua, kalimat tersebut akan bernilai benar jika y diganti dengan angka 3 dan jika y diganti dengan angka selain 3 maka sudah tentu kalimat tersebut akan bernilai salah. Pada kalimat kedua variabelnya adalah y sedangkan konstantanya adalah 8 dan 5.

Maka, Di dalam kalimat terbuka kita akan menjumpai Variabel dan Konstanta. Variabel dapat diganti dengan sembarang anggota himpunan yang sudah ditentukan. Sementara konstanta bersifat tetap dan tidak dapat digantikan.


Himpunan penyelesaian kalimat terbuka

Kita ambil contoh kalimat terbuka berikut ini:

x2= 81

Kalimat tersebut akan bernilai benar apabila kita mengganti variabel x dengan 9 atau -9. Maka, penyelesaian dari kalimat terbuka tersebut adalah x = 9 atau x = -9. Maka, himpunan penyelesaian dari kalimat x2 = 81 adalah {9, -9}


Demikianlah ulasan mengenai Pengertian Pernyataan, Kalimat Terbuka dan Himpunan Penyelesaian semoga bermanfaat.

Related Posts:

Rumus Cara Mencari Jumlah Tabungan Setelah n Tahun

Cara Mencari Jumlah Tabungan Setelah n Tahun Salah satu jenis soal yang sering muncul ketika ujian nasional adalah mengenai jumlah tabungan setelah n tahun. Bentuk soal seperti ini seringkali muncul namun terkadang bentuknya berbeda-beda. Oleh karenanya, Rumus Matematika Dasar merasa perlu untuk memberikan penjelasan mengenai bagaimana cara menyelesaikan bentuk soal seperti ini. Pada materi ini akan dijelaskan mengenai langkah-langkah yang bisa kalian lakukan guna menyelesaikan soal tersebut dengan cepat dan akurat. Cara pengerjaan tersebut tentunya disertai dengan contoh-contoh soal untuk mempermudah kalian dalam memahaminya. Yuk kita simak saja langsung pembahasannya sebagai berikut:

Rumus Cara Mencari Jumlah Tabungan Setelah n Tahun


Cara Menyelesaikan Soal Mencari Jumlah Tabungan Setelah n Tahun


Sebelum masuk ke dalam pembahasan, sebaiknya kalian mengamati contoh soal berikut ini:

Contoh Soal 1
Bank Lampung menerapkan suku bunga sebesar 8% per tahun. Jumlah tabungan Amir setelah menabung selama 2,5 tahun adalah Rp. 6000.000. Lalu, berapakah jumlah tabungan awal Amir? ....


Contoh Soal 2
Pak Kosim menabungkan uangnya pada sebuah bank sebesar Rp.800.000. Apabila bunga yang berlaku di bank tersebut adalah 15% per tahun, hitunglah berapa jumlah uang pak Kosim setelah menabung selama 6 bulan ...

Dari contoh soal di atas mari kita nyatakan ke dalam beberapa lambang. Suku bunga kita nyatakan dalam a%, dan waktu dinyatakan dalam n tahun. Maka rumus besarnya bunga tunggal (BT) dalam n tahun dapat dijabarkan menjadi:

BT = a% × n × M

Kemudian untuk mencari jumlah tabungan (JT) setelah n tahun kita bisa menjumlahkan modal awal dengan besarnya bnga tunggal setelah n tahun:

JT = (a% × n × M) + M

Maka, rumus yang kita gunakan untuk menghitung jumlah tabungan setelah n tahun adalah:

JT = (a% × n × M) + M


Setelah mengetahui rumusnya, mari kita coba selesaikan kedua contoh soal di atas:


Penyelesaian Soal 1:

Diketahui:
JT = Rp 6.000.000
n = 2,5 tahun = 5/2 tahun
a% = 8%


Ditanyakan:
M =….?

Penyelesaian:
JT = (a% × n × M) + M
6.000.000 = (8% × (5/2) × M) + M
6.000.000 = 20%M + M
6.000.000 = 0,2M + M
6.000.000 = 1,2M
M = 4.000.000/1,2
M = 5.000.000



Penyelesaian Soal 2:

Diketahui:
M = Rp 800.000
a% = 15% = 15/100
n = 6 bulan = (6/12) tahun = (1/2) tahun

Ditanyakan:
JT = . . .?

Penyelesaian:
JT = (a% × n × M) + M
JT = ((15/100) × (1/2) × 800.000) + 800.000
JT = 60.000 + 800.000
JT = 860.000


Demikianlah penjelasan Rumus Cara Mencari Jumlah Tabungan Setelah n Tahun perhatikan cara penyelesaian soal yang telah dijabarkan dengan seksama agar kalian bisa memahaminya dengan baik sehingga dapat menyelesaikan soal-soal serupa dengan cepat dan akurat.

Related Posts:

Pengertian, Rumus dan Contoh Himpunan Bagian

Pengertian Himpunan Bagian - Sebelumnya Rumus Matematika Dasar telah membahas materi mengenai Himpunan yang menjadi salah satu materi yang diajarkan di SMP. Di dalam himpunan, ada istilah yang disebut dengan himpunan bagian. Himpunan bagian secara sederhana dapat didefinisikan  sebagai sebagai sebuah kondisi dimana unsur dari sebuah himpunan termasuk ke dalam unsur dari himpunan yang lain. Sebagai contoh, Himpunan M dapat dikatakan sebagai himpunan bagian dari N apabila setiap unsur yang ada di dalam himpunan M termasuk juga kedalam umusr yang ada dalam himpunan N. Sekarang coba perhatikan gambar berikut:

Dari gambar di atas kita dapat melihat bahwa ada tiga buah himpunan berbeda yaitu himpunan A, B dan C. Jika diperhatikan, tentu kalian bisa melihat bahwa anggota yang dimiliki oleh himpunan A (1, 2, dan 3) ternyata juga termasuk ke dalam anggota yang ada pada himpunan C (1, 2, 3, 4, dan 6). Dalam kasus seperti ini, maka kita dapat menyimpulkan bahwa Himpunan A adalah himpunan bagian dari himpunan C. Kondisi tersebut dapat dilambangkan menjadi A ᴄ C atau C ᴐ A.

Sekarang coba lihat gambar yang ada di bawah ini:

Dari gambar tersebut, kita bisa mengamati bersama bahwa ada anggota himpunan B yang juga termasuk ke dalam anggota himpunan C (4, 5). tetapi, ada anggota himpunan B yang tidak menjadi anggota himpunan C (6). Sehingga pada kejadian seperti ini himpunan B tidak bisa dikatakan sebagai himpunan bagian dari C karena tidak semua anggotanya ada pada himpunan C. Kejadian tersebut dapat dilambangkan menjadi B c C. 


 Rumus dan Contoh Himpunan Bagian

Untuk memahami lebih jauh mengenai himpunan bagian, sekarang perhatikan contoh himpunan di bawah ini:

S = {semua murid kelas 7 di SMP Tunas Mekar}
K = {semua murid kelas 7A di SMP Tunas Mekar}
L = {semua murid perempuan di kelas 7A}
M = {semua murid laki-laki di kelas 7A}

Dari beberapa himpunan di atas, kita bisa menyimpulkan beberapa keterangan seperti:

1. Himpunan L dan M adalah himpunan bagian dari himpunan A karena setiap anggota yang ada pada himpunan L dan M sudah pasti termasuk ke dalam himpunan K (siswa perempuan dan laki-laki di kelas 7A adalah semua siswa di kelas 7A)

2. Himpunan K adalah himpunan bagian dari himpunan S karena setiap anggota yang ada di himpunan K termasuk ke dalam anggota yang ada di himpunan S (Semua siswa kelas 7A sudah pasti termasuk kedalam seluruh siswa kelas 7 yang ada di SMP Tunas Mekar)

3. Himpunan L bukanlah himpunan bagian dari himpunan M (karena anggota himpunan murid laki-laki tidak mungkin dimasukkan ke dalam anggota himpunan murid perempuan) begitupun sebaliknya.


Bagaimana apakah sekarang kalian sudah paham dan mengerti mengenai Pengertian, Rumus dan Contoh Himpunan Bagian ? Semoga penjelasan singkat di atas bisa membantu kalian untuk lebih memahami mengenai apa yang disebut sebagai himpunan bagian dan bisa mengerjakan soal-soal mengenai himpunan dengan lebih mudah dan lancar.

Related Posts:

Cara Menggambar Grafik Fungsi Aljabar

Menggambar Grafik Fungsi Aljabar - Di dalam pelajaran matematika kalian pasti diajarkan mengenai cara- cara menggambarkan grafik fungsi aljabar baik yang berupa garis lurus maupun grafik fungsi aljabar dengan bentuk parabola. Grafik fungsi aljabar yang berbentuk garis lurus dinyatakan dengan persamaan fungsi linear y = f(x) = mx + nsedangkan grafik fungsi yang berbentuk parabola dinyatakan dalam persamaan fungsi kuadrat y = f(x) = ax2+ bx + c.

Cara Menggambar Grafik Fungsi Aljabar
Catatan:

Gambar dan grafik fungsi y = f(x) disebut kurva y = f(x). Untuk selanjutnya kita akan sering menggunakan istilah kurva.

Di dalam materi kali ini, Rumus Matematika Dasar akan mengajarkan cara-cara menggambarkan kurva yang dinyatakan dengan persamaan fungsi suku banyak. Fungsi sukubanyak adala suatu fungsi dengan peubah (variabel) x yang memupnyai pangkat lebih dari dua. Berikut adala beberapa contohnya: 

y = f(x) = x3+ 4x2  - 16x + 2
y = f(x) = x4 + 3x3 - 12x2 - 10x + 5
y = f(x) = 2x5- 10x4 + 2x3 + 3x2 + 15x + 6 ...... dan seterusnya.

Kurva-kurva yang dinyatakan dengan persaaan fungsi sukubanyak disebut sebagai kurva sukubanyak. 

Di dalam penerapannya, kemampuan menggambar kurva sukubanyak ini merupakan modal dasar untuk mempelajari kalkulus hitung integral, misalnya untuk menghitung luas daerah yang dibatasi oleh suatu kurva sukubanyak dengan sumbu X, dan sebagainya.

Beberapa pengertian tentang fungsi naik, fungsi turun, titik balik maksimum, titik balik minimum, titik belok horisontal, serta titik-titik potong dengan sumbu-sumbu koordinat akan sangat membantu dalam menyelesaikan gambar suatu kurva suku banyak. Sebagai pedoman, berikut ini adalah langkah-langkah yang dapat kalian ikuti tentunya untuk bisa menggambarkan suatu kurva sukubanyak.

Langkah-langkah untuk Menggambar Grafik Fungsi Aljabar


Langkah Pertama
Buatlah terlebih dahulu analisis pendahuluan yang meliputi:

  • Menentukan koordinat titik-titik potong kurva dengan sumbu-sumbu koordinat (jika koordinat itu mudah ditentukan).

             (i) titik potong dengan sumbu X, dengan mengambil syarat y = 0
            (ii) titik potong dengan sumbu Y, dengan mengambil syarat x = 0

  • Tentukan interval-interval ketika fungsi itu naik dan ketika fungsi itu turun.
  • Tentukan titik-titik stationer serta jenisnya : titik balik maksimum, titik balik minimum, atau titik belok horisontal.
  • Tentukan nilai-nilai fungsi pada ujung-ujung interval. Jika kurva itu akan digambarkan untuk semua bilangan real, maka perlu ditantukan nilai-nilai y untuk nilai x yang besar positif dan untuk nilai x yang besar negatif.
  • Tentukanlah beberapa titik tertentu untuk memperhalus sketsa kurva.


Langkah Kedua
Dari langkah pertama, titik-titik yang didapat kita sajikan dalam bidang cartesius.

Langkah Ketiga
Titik-titik yang telah disajikan dalam bidang Cartesius pada langkah kedua, kemudian kita hubungkan dengan mempertimbangkan naik atau turunnya fungsi. Dengan demikian, kita akan mendapatkan kurva y = f(x)

Agar kalian lebih mudah dan terampil dalam memahami cara menggambar kurva sukubanyak dengan persamaan y = f(x) maka sebaiknya perhatikan contoh di bawah ini:

Soal
Gambarlah sketsa kurva sukubanyak yang ditentukan dengan persamaan y = f(x) = 4x – x3

Cara Menjawabnya:

Langkah Pertama
(a) Koordinat titik-titik potong dengan sumbu-sumbu koordinat.
 (i) titik potong dengan sumbu X, dengan mengambil y = 0
      4x – x3 = 0
èx(4 – x2) = 0
èx (2 + x) (2 – x) = 0
èx1= -2 atau x2 = 0 atau x3 = 2
Titik-titik potong dengan sumbu X adalah (-2, 0) (0, 0), dan (2, 0)

                (ii) Titik potong dengan sumbu Y, dengan mengambil x = 0 diperoleh:
                      Y = 4(0) – (0)3 = 0
                Titik potong sumbu Y adalah (0, 0)

(b) Dari f(x) = 4x – x3maka f’(x) 4 – 3x2
     
                  f(x) naik jika f’(x) > 0                     ||             f(x) turun jika f’(x) < 0
                                4 – 3x2 > 0                      ||                           4 – 3x2 < 0
è3x2< 4                                            ||           à3x2 > 4
è-2/3 √3 < x < 2/3 √3                      ||           àx < -2/3 √3 atau x > 2/3 √3     

Perhatikan diagram tanda f’(x) pada gambar berikut ini:

Cara Menggambar Grafik Fungsi Aljabar

(c) Nilai stationer dan jenisnya
                
                Nilai stationer dicapai apabila f’(x) = 0
               
                4 – 3x2 > 0
àx1= -2/3 √3    atau   x2 = 2/3 √3

Nilai-nilai stationernya:

Untuk x1 = -2/3 √3    àf(-2/3 √3) = 4(-2/3 √3) – (-2/3 √3)3 = - 16/9 √3
        
f(-2/3 √3) = - 16/9 √3 merupakan nilai balik minimum, sebab f’(x)berubah tanda dari negatif menjadi positif ketika melewati x =-2/3 √3

Untuk x2= 2/3 √3    àf(2/3 √3) = 4(2/3 √3) – (2/3 √3)3 =  16/9 √3

f(-2/3 √3) = 16/9 √3 merupakan nilai balik maksimum, sebab f’(x)berubah tanda dari positifmenjadi negatif ketika melewati x = 2/3 √3

Jadi titik balik maksimumnya (2/3 √3), 16/9 √3) dan titik balik minimumnya (-2/3 √3), -16/9 √3)

(d) Untuk x besar maka y = f(x) = 4x – x3 dekat dengan -x3
      Jika x besar positif, maka y besar negatif
      Jika y besar negatif maka x besar positif

(e) Ambil beberapa titik tertentu untuk memperbaiki sketsa kurva.
               
                x = -3 à y = f(-3) = 4(-3) – (-3)3 = 15 à (-3, 15)
                x = -1 ày = f(-1) = 4(-1) – (-1)3 = -3 à(-1, -3)

                x = 1 ày = f(1) = 4(1) – (1)3 = 3 à (1, 3)
                x = 3 à y = f(3) = 4(3) – (3)3 = 15 à (3, 15)


Langkah Kedua
Beberapa titik yang diperoleh pada langkah pertama diletakkan pada bidang kartesius.

Langkah Ketiga
Titik-titik yang telah disajikan pada bidang kartesius itu kemudian dihubungkan untuk memperoleh sketsa kurva yang mulus seperti pada gambar dibawah ini:


Dalam hal ini perlu juga diperhatikan pula naik turunnya fungsi pada interval-interval yang telah ditentukan pada langkah 1 bagian (b)

Cara Menggambar Grafik Fungsi Aljabar
Demikianlah penjelasan tata Cara Menggambar Grafik Fungsi Aljabar lengkap dengan contoh soal dan penjelasan langkah-langkahnya. Semoga kalian bisa mengerti dan menerapkannya dengan baik.

Related Posts:

Memahami Rumus Segitiga Pascal dalam Matematika

Rumus Segitiga Pascal - Di dalam pelajaran matematika, segitiga pascal dapat diartika sebagai sebuah aturan geometrri yang berisi susunan koefisien binomial yang bentuknya menyerupai segitiga. Aturan ini ditemukan dan dikembangkan oleh sorang matematikawan asal perancis yang bernama Blaise Pascal. Perlu kalian ketahio bahwa ada beragam fakta unik yang tersimpan di dalam segitiga pascal ini. Segitiga pascal terdiri dari beberapa baris dimana dalam setiap barisnya terkandung bilangan-bilangan yang berupa koefisien daripada bentuk ekspansi pangkat bilangan cacah dari binomial. Jika belum paham dengan aturan segitiga pascal, berikut adalah salah satu contoh gambar dari segitiga pascal yang bisa kalian amati:

Memahami Rumus Segitiga Pascal dalam Matematika


Bisa dilihat dari gambar diatas bahwa puncak atau bagian teratas dari segitiga pascal (baris ke 0) diisi dengan angka 1. Kemudian di bawahnya (baris ke 1) diisi dengan angka 1 dan 1. Kemudian baris elanjutnya (baris ke-2) tetap di isi dengan angka 1 dan 1 dibagian sisinya kemudian pada bagian dalam diisi dengan hasil dari penjumlahan dua bilangan yang ada di atasnya (1+1=2). Sedangkan untuk baris ketiga diisi dengan angka 1 dan 1 pada bagian sisi kemudian bagian tengahnya diisi dengan angka hasil dari penjumlahan dua buah bilangan yang ada pada baris ke-2 (1+2 =3). Kemudian perhatikan pada baris keempat, angka 4 di dapatkan dari hasil penjumlahan dua bilangan yang ada di atasnya (1+3) begitu juga angka 6 diperoleh dari penjumlahan dua bilangan yang ada di atasnya (3 + 3). dan begitu seterusnya.

Penjelasan Rumus Segitiga Pascal dalam Matematika


Bilangan-bilangan yang ada pada setiap baris segitiga pascal menunjuhkan koefisien yang berupapenyederhanaan bentuk dari (a + b)n.

Apabila kita menjabarkan bentuk (a + b)n tersebut, maka akan terlihat bahwakoefisien yang diperoleh dari bentuk tersebut sama persis dengan tiap-tiap bilangan yang ada pada setiap baris dari segitiga pascal di atas. Coba perhatikan penyederhanaan berikut ini:

1. (a + b)1 = a + b   àkoefisiennya adalah 1 dan 1
2. (a + b)2 = a2 + 2ab + b2    àkoefisiennya adalah 1, 2, dan 1
3. (a + b)3 = (a + b)(a2 + 2ab + b2)
                 = a3+ 2a2b + ab2 + a2b + 2ab2 + b3
                 = a3+ 3a2b + 3ab2 + b3  àkoefisiennya adalah  1, 3, 3, dan 1


Jika kita perhatikan, pola bilangan tersebut sebenarnya adalah koefisien dari expansi pangkat binomial, coba kalian perhatikan contoh berikut ini:

(x + y)4 = x4+ 4x3y + 6x2y2 + 4xy3 + y4

artinya, pada i=4 diperoleh koefisien dari expansi pangkat binomial 4 yaitu 1, 4, 6, 4, dan 1 yang ternyata adalah bilangan-bilangan yang mengisi baris ke-4 pada sebuah segitiga Pascal. Sekarang coba perhatikan Teorema Binomial di bawah ini:

Memahami Rumus Segitiga Pascal dalam Matematika

Dari penguraian rumus diatas, dapat disimpulkan secara umum bahwasannya barisan bilangan yang ada pada baris i=k di dalam sebuah segitiga Pascal dapat dituliskan menjadi seperti berikut ini:

Memahami Rumus Segitiga Pascal dalam Matematika

Untuk lebih jelasnya mari kita ambil contoh untuk bilangan ke-2 dan ke-3 yang ada pada baris ke-5 dalam segitiga Pascal adalah:

Memahami Rumus Segitiga Pascal dalam Matematika


Dari pola di atas juga bisa diperoleh sebuah rumus baru yang dapat digunakan untuk menentukan bilangan a i, j yang merupakan bilangan yang ada pada baris ke-i dan kolom ke-j seperti berikut ini:

Memahami Rumus Segitiga Pascal dalam Matematika

Kita umpamakan saja misalkan kita ingin mencari bilangan yang ada di posisi baris ke-7 dan tepat pada kolom ke-6 maka perhitungan rumusnya adalah:



Dari penjabaran rumus tersebut, kita dapat menuliskan barisan bilangan yang ada pada diagonal ke-d menjadi sebagai berikut:

Sehingga pada akhirnya didapatkan rumus suku ke-n dari barisan bilangan yang ada pada diagonak ke-d seperti di bawah ini:

Memahami Rumus Segitiga Pascal dalam Matematika

untuk membuktikan rumus tersebut, mari kita coba mencari diagonal ke-3 pada sebuah segitiga Pascal yang memiliki pola n(n + 1)/2. Berikut adalah hasil ujinya:

Memahami Rumus Segitiga Pascal dalam Matematika


Kurang lebih begitulah cara Memahami Rumus Segitiga Pascal dalam Matematika yang bisa Rumus Matematika Dasar jelaskan kepada kalian semua. Semoga kalian bisa memahaminya dengan baik dan mengerti tentang pola bilangan yang berlaku dalam segitiga Pascal. Sampai jumpa lagi dalam materi matematika lainnya.

Related Posts:

Contoh Soal Matematika Ujian Nasional SMA/SMK 2015 Terlengkap

Contoh Soal Matematika Ujian Nasional - Memasuki bulan April tentu menjadi hari-hari yang mendebarkan bagi kalian yang duduk di bangku kelas 12 SMA atau SMK. Karena di pertengahan bulan april biasanya Ujian Nasional diadakan. Untuk menghadapinya tentu dibutuhkan banyak persiapan serta latihan. Mata pelajaran yang paling mendapat perhatian pada saat menjelang ujian nasional tentunya adalah Bahasa Indonesia, Bahasa Inggris, dan Matematika.

Contoh Soal Matematika Ujian Nasional SMA/SMK 2015
Google Images
Oleh sebab itu, pada postingan Rumus Matematika Dasar kali ini akan diberikan beragam contoh soal matematika yang mungkin saja aka muncul pada ujian nasional. Contoh-contoh soal yang diberikan disesuaikan dengan materi-materi yang diajarkan disekolah. Semoga contoh-contoh soal di bawah ini bisa memberikan manfaat kepada kalian untuk persiapan dalam menghadapi ujian nasional terutama untuk mata pelajaran matematika.

Contoh Latihan Soal Matematika Ujian Nasional SMA/SMK 2015


Persamaan Kuadrat


Jika p dan q adalah akar-akar persamaan kuadrat x2 – 3x + 1 = 0, maka persamaan kuadrat yang akar-akarnya p/q +1 dan q/p + 1 adalah ….
a. x2 + 9x + 9 = 0
b. x2– 9x + 9 = 0
c. x2+ 9x – 9 = 0
d. 9x2+ x + 9 = 0
e. 9x2– x + 9 = 0


Supaya grafik fungsi y = (p + 6) + px + 2x2 memotong sumbu X di dua titik berbeda di sebelah kanan o(0, 0). Maka haruslah ….
a. p < 0
b. -6 < p < 0
c. -6 < p < -4
d. -4 < p < 0
e. -6 < p < -4 atau p > 12


Akar-akar persamaan kuadrat x2 + bx – 50 = 0 adalah satu lebih kecil dari tiga kali akar-akar persamaan kuadrat x2 + x + a = 0. Persamaan kuadrat akar-akarnya a dan b adalah ….

a. x2 – x – 30 = 0

b. x2 + x – 30 = 0

c. x2 – 5x – 6 = 0

d. x2 + 5x – 6= 0e. x2 – 6x + 5 = 0


Fungsi Kuadrat


Jika fungsi f(x) = -2x 2 – (a + 1)x + 2a mempunyai nilai maksimum 8, maka nilai a =
a. 3
b. -21
c. -3
d. 3 atau -21
e. 3 atau 21

Agar garis ­y = -x – 2 menyinggung parabola y = x2 + px + p – 4, maka nilai p adalah ….
a. 4
b. -3
c. 1
d. 3
e. 4


Pertidaksamaan


Himpunan penyelesaian pertidaksamaan ||x | + x | ≤ 2 adalah ….

a. 0 ≤ x ≤ 1

b. x ≤ 1

c. x ≤ 2

d. x ≤ 0
e. x ≤ 0


Himpunan penyelesaian pertidaksamaan (x – 2)(3 – x) ≥ 4(x – 2) adalah ….

a. 2 ≤ x ≤ 3

b. x ≤ 2 atau x ≥ 3

c. -2 ≤ x ≤ 1

d. -1 ≤ x ≤ 2
e. x ≤ -1 atau x ≥ 2


Gradien dan Persamaan Garis


Garis g tegak lurus pada garis 3x + 2y – 5 = 0. Jika garis g memotong sumbu Y di (0, 3), maka persamaan garis g adalah ….

a. 3x + 2y – 6 = 0

b. 3x – 2y – 6 = 0

c. 3x + 3y + 9 = 0

d. 2x – 3y + 9 = 0
e. 2x + 3y – 9 =0


Program Linear


Himpunan penyelesaian dari system pertidaksamaan 2x + y ≤ 40, x + 2y ≤ 40, x ≥ 0, y ≥0terletak pada daerah yang berbentuk ….
a. trapesium
b. persegi panjang
c. segi tiga
d. segi empat
e. segi lima


Nilai maksimum 4x + 5y dengan syarat x ≥ 0, y ≥ 0, x + 2y ≤ 10, dan x + y ≤ 7 adalah ….
a. 34
b. 33
c. 32
d. 31
e. 30


Nilai minimumdari fungsi f(x, y) = 40x + 10y dengan syarat 2x + y ≥ 12; x + y ≥10; x, y ≥ 0 adalah ….
a. 100
b. 120
c. 160
d. 240
e. 400


Relasi dan Fungsi


Fungsi f : A à B memetakan (mengawankan) himpunan A = {1, 2, 3} ke himpunan B = {2, 3, 4}. Maka f dapat disajikan oleh himpunan pasangan terurut ….
(1) { (1, 1), (2, 2), (3, 3) }
(2) { (1, 2), (2, 3), (2, 3) }
(3) { (1, 2), (1, 3), (2, 4) }
(4) { (3, 2), (2, 2), (1, 3) }
 a. 1, 2, dan 3
b. 1 dan 3
c. 2 dan 4
d. 4
e. 1, 2, 3, dan 4


Jika g(x) = -x + 3, maka [g(x)]2 – 2 g(x) + g(x2) = ….

a. 6x + 4

b. -4x + 6

c. 2x2 – 6x + 4

d. 2x2 + 4x + 6
e. 2x2 – 4x - 6

Matriks


Contoh Soal Matematika Ujian Nasional SMA/SMK 2015
a. 44
b. -44
c. 36
d.- 36

Contoh Soal Matematika Ujian Nasional SMA/SMK 2015


Statistika

Lima orang karyawan A, B, C, D, dan E mempunyai pendapatan sebagai berikut:
Pendapatan A sebesar 1/2 pendapatan E
Pendaparan B lebih besar Rp. 100.000 dari A
Pendapatan C lebih  besar Rp.150.000 dari A
Pendapatan D Lebih kecil Rp.180.000 dari E
Bila rata-rata pendapatan kelima karyawan tersebut adalah Rp. 525.000, maka pendapatan karyawan D adalah ….
a. Rp. 515.000
b. Rp. 520.000
c. Rp. 550.000
d. Rp. 535.000
e. Rp. 565.000

Suatu keluarga mempunyai 5 orang anak. Anak temuda berumur 1/2 dari umur anak tertua sedang 3 anak yang lain berturut-turut berumur lebih dari 2 tahun dari anak termuda, lebih 4 tahun dari anak termuda, dan kurang 3 tahun dari anak tertua. Bila rata-rata hitung umur mereka adalah 16, maka umur anak tertua adalah ….
a. 18 tahun
b. 20 tahun
c. 22 tahun
d. 24 tahun
e. 26 tahun


Trigonometri 

Jika 2 sin2 x + 3 cos x = 0 dan 00 ≤ x ≤ 1800, maka x = ….
a. 600   
b. 300   
c. 1200   
d. 1500   
e. 1700    




α, β, dan µ adalah sudut-sudut sebuah segitiga. Jika tan α + tan µ = 2 tan β , maka tan α . tan µ = ….

a. 1

b. 2
c. 3
d. 4
e. 5

Fungsi y = - √3 cos x + sin x + 4 mempunyai nilai ….

a. minimum = -2, untuk x = 3300

b. minimum = 2, untuk x = 1500
c. minimum = 2, untuk x = 1500
d. minimum = 6, untuk x = 3300
e. minimum = 6, untuk x = 1500


Limit



Contoh Soal Matematika Ujian Nasional SMA/SMK 2015





a. 2 3/4
b. 3 3/4
c.-2 1/2
d.-3 1/2
e.-4 1/2


Turunan


Y = (x2 + 1)(x3 – 1) maka y’ adalah ….
a. 5x3
b. 3x3 + 3x
c. 2x4 – 2x
d. x4 + x 2 – x
e. 5x4 + 3x2 – 2x

Jika garis singgung pada kurva y2 = 6xdi titik P membentuk sudut 450dengan sumbu X positif, maka koordinat titik P yang dimaksud adalah ….
a. (6, 6)
b. (2/3, -2)
c. (2/3, 3)
d. (3/2, 3)
e. (3/2, -3)


Integral

Diketahui F'(x) = 3x2 – 4x + 4. Untuk x = 2 fungsi berharga 15, maka F(x) = ….  
a. x3 + 2x2 + 4x + 7
b. x3 + 2x2 + 4x + 5
c. x3 + 2x + 7
d. x3 - 2x2 + 4x + 7
e. x3 - 2x2 + 4x - 5

  
Demikianlah beberapa Contoh Soal Matematika Ujian Nasional SMA/SMK 2015 yang mungkin bisa membantu kalian semua untuk berlatih mengerjakan soal-soal matematika dalam rangka persiapan menghadapi ujian nasional. Semoga beruntung dan bisa mendapatkan nilai yang memuaskan.

Related Posts: